|
Who's Online
There currently are 5993 guests and 15 members online.
|
Categories
|
Information
|
Featured Product
|
|
|
|
|
There are currently no product reviews.
;
The content of the manual was not found on the Internet and was a hard find. I check the net for 5 hours until I came across this web-site. When I did find the book it Auto loaded into my IPAD PDF shelf for books for review at anytime. Overall I am satisfied with the book and it answered all my questions. This repair book is obsolete because the product I bout it for is pretty old. Thanks for the help with the download and even having the manual. Thanks 73's K5HRD
;
Excellent manual including schematics. The service was great and the manual helped complete the job.
;
It was magic after so many years to still be able to source this info. It was equally amazing to return my Pioneer receiver to it near new sound quality AFTER NEARLY 30 YEARS! Thank you for this ability!
;
Very quick and easy website to use and fast download of manual, quality of manual is excellent and will be pleased to use this service again in the future, thanks so much!
;
Easy and secure way to get a complete service manual of a vintage hifi component. Only some parts of the print copy are dificult to read. Nice price!
TEST PROCEDURES
1. Bias Adjustment Setup and Procedure 1.1 Locate the -85V negative terminal found on the capacitor (C4). See Figure 1 for the location of C4. Note: The 1801 and very early 1800's had two lugs on the caps. One with two or three wires and one single wire. The later production 1800 had three lugs on the capacitor. Either way the lug with the two or three wires is the lug to disconnect from the capacitor. All other lugs remain. 1.2 Remove the lug with two or three wires connected to it. 1.3 Connect a 0-200mA meter between the disconnected lug and the - terminal on the capacitor C4. 1.4 Disconnect the PCB that is not being tested by unplugging the multiple pin connector. 1.5 Turn the amplifier on with no input signal applied and adjust the bias pot (R13) for 90mA with the board cold. Note: The PCB must be removed from the chassis for the bias to be adjusted. 2. Frequency Response Procedure 2.1 Apply a 1Vrms, 1kHz signal to the input. 2.2 Reference a dB meter to the output. 2.3 Check the response from 20Hz to 20kHz. The response should not exceed ±1 dB. Refer to the response specification on page 2. 3. DC Offset Procedure 3.1 With no signal applied measure the DC offset at the output. It should measure 250mV or less. 4. Power Output Procedure 4.1 Connect an 8 ohm, 250 Watt load to the output. 4.2 Apply a 1.75Vrms, 1kHz signal to the input. 4.3 Turn the gain controls up to the point where the clipping LED's just begin to light up and check the output for 250 watts. 4.4 Repeat the steps above for a 4 ohm load. The output measurement should be 400 watts. 5. Harmonic Distortion Procedure 5.1 With the unit connected as in procedure 3, turn the gains up to just before clipping and check the distortion at the frequencies of 20Hz, 5kHz, and 10kHz. 5.2 The distortion limits are �.15% from 20Hz to 5kHz and �.5% from 5kHz to 10kHz. 6. Thermal Cutoff Procedure 6.1 Apply a signal to the unit with the outputs loaded ( 8 or 4 ohms ). Short one channel at a time until the unit goes into thermal cutoff. The thermal indicator should turn on and the output of the unit should be off. 6.2 Disconnect the short from the output. Wait until the unit comes out of thermal cutoff. You can speed this process by cooling the PCB with a fan. 6.3 Once the unit is cooled apply a signal to the channel you had shorted to check to see if its operational. 6.4 Apply a signal to the other channel and short the output. Wait for the thermal indicator to come on then remove the short and cool the PCB.
9
|
|
|
> |
|