|
Who's Online
There currently are 5335 guests online.
|
Categories
|
Information
|
Featured Product
|
|
|
|
|
There are currently no product reviews.
;
This service manual for the Kenwood KT-990D was reproduced really well ,is very legible and manual is complete.Combined with the low price paid,in the future,I will be checking Owner-Manuals.com any time I need a manual.
;
When I purchased this manual I had my doubts regarding the quality as the price was so reasonable as compared to other outlets.
The manual itself is of high standard the print is very clear as are the diagrams. Obviously with the diagrams one has to zoom in otherwise it is to small to be able to read.
Overall I am very pleased with the company who delivered as they said and with the manual they supplied.
I occasionally require a manual and now having registered with this company I shall order from them in the future.
;
I was at first dubious about payiong for downloaded manuals but having done so, I was extremely impressed with quality of the two manual I ordered, well worth the small price I paid.
I would highly recommend these to my friends.
;
reasonable price for the schematic - the service is perfect, all as expected and pointed by instructions - good scan of the original plans - thank you!
;
Manual was just as described!!! I odered it and in less than a day was able to download it and the text was clear and pages were all complete just as the original manual was. Purcashed this for a friend and they were more than happy. Perfect all around!
CX-916
4) Focus Error Amplifier
The photo-detector outputs (A + C) and (B + D) are passed through a differential amplifier and an error amplifier, and then (A + C � B � D) is output from Pin 91 as the FE signal. The FE voltage low frequency component is : 16k (80k//300k) FE = (A + C � B � D) � � 10k 20k = (A + C � B � D) � 5 Using REFO as the reference, an S-curve of approximately 1.5 Vpp is obtained for the FE output. The final-stage amplifier cutoff frequency is 11.4 kHz.
90 D/A FE OFFSET CN101 A+C 10k 6 82 83 16k 48k 110k 80k R200 300k 91 FE
C210 220pF
20k
A/D TO DIG. EQ
84 13 B+D 85 10k 16k
48k 20k
Fig.4 : FOCUS ERROR AMPLIFIER
5) Tracking Error Amplifier
The photo-detector outputs E and F are passed through a differential amplifier and an error amplifier, and then (E � F) is output from Pin 93 as the TE signal. The TE voltage low frequency component is : TE = (E � F) � 224k (56k+27k) � 80k 38k
6) Tracking Zero Crossing Amplifier
TEC signal (the tracking zero crossing signal) is obtained by multiplying the TE signal four times. It is used for locating the zero crossing points of the tracking error. The zero cross point detection is done for the following two reasons : 1 To count tracks for carriage moves and track jumps. 2 To detect the direction in which the lens is moving when the tracking is closed (it is used on the tracking brake circuit to be described later). The TEC signal frequency range is 300 Hz to 20 kHz. TEC voltage = TE level � 4 Theoretical TEC level is 5.2V. The signal exceeds Drange of the operational amplifier and thus is clipped. It, however, can be ignored since this signal is used by the servo LSI only at the zero crossing point.
C211 100pF 92 D/A TE OFFSET 110k 80k 93 TE
= (E � F) � 5.7 (Effective LSI output is 5.0). Using REFO as the reference, the TE waveform of approximately 1.3 Vpp is obtained for the TE output. The final-stage amplifier cutoff frequency is 20 kHz.
CN101 F R215 F 9 86 27k 56k 224k 48k
38k
A/D TO DIG. EQ TE2 94 20k R210 0 C212
E R216 E 11 27k 87 56k 224k 48k 38k
60k
95 TEC 6800pF
4
Fig.5 TRACKING ERROR AMPLIFIER AND TRACKING ZERO CROSSING AMPLIFIER
|
|
|
> |
|